Congratulations of Michael Ertl and Co-workers!

Quite surprisingly, the synthetic version of a naturally occurring iron mineral named after a Nobel laureate (Mössbauerite), which has been previously studied by geologists and soil scientists, was found to be a promising ‘iron only’ electrocatalyst for the oxygen evolution reaction (OER). In a four-way collaboration between the Universities of Bayreuth, Bochum, Munich, and Toronto, the electrocatalytic performance of synthetic mössbauerite is demonstrated to be competitive with the best-known ‘iron only’ electrocatalysts. Significantly, the structure of Mössbauerite offers plenty of opportunities for compositional modifications in the quest for a champion earth-abundant, low-cost, non-toxic electrocatalyst

The full article can be read on the Chemistry A European Journal website.

Posted in Uncategorized | Leave a comment

Congratulations, Lu, Mireille, and Co-Authors, on your Solar Methanol Paper in Joule!

The current fashion for synthesizing methanol continues to be the high pressure and high temperature heterogeneous catalytic conversion of synthesis gas (CO-H2) using alumina supported nanostructured copper-zinc oxide as the catalyst and fossil fuel to power the process. It is an energy intensive process with a large CO2 greenhouse gas footprint and a deleterious effect on the climate. Thus, it would be highly desirable to produce methanol in a sustainable way and use CO2 as feedstock and solar energy to drive the synthesis. Solar technologies that facilitate the efficient conversion of CO2 and H2 into methanol offer a sustainable path to the production of renewable fuels. Furthermore, since about 30% of all known chemicals come from methanol, the production of solar methanol appears to be a “greener” strategy for the chemical and petrochemical industries. In this breakthrough report in Joule, we present a “solar methanol maker”, a rod-shaped In2O3-x(OH)y nanocrystal superstructure, that can efficiently hydrogenate CO2 to methanol at atmospheric pressure with a methanol selectivity for more than 50%. The remarkable production rate of 0.06 mmol gcat-1h-1 and excellent long-term stability of this catalyst in solar methanol synthesis makes it an interesting candidate for converting CO2 to methanol at an industrial scale in a CO2 refinery.

A preview of the study by Chem be read here, along with the full article on the Joule website.

Posted in Uncategorized | Leave a comment

Congratulations Mireille!

Mireille has received some great news, the award of a prestigious graduate scholarship from the Natural Sciences and Engineering Research Council (NSERC) of Canada to support her doctoral research in the area of solar fuels. This scholarship recognises the outstanding performance of graduate students in their PhD studies.

Posted in Uncategorized | Leave a comment

Congratulations Jia Jia!

Jia Jia has just learned she has won the much-coveted “Chinese Government Award for Outstanding Self-Financed Students Abroad” from the China Scholarship Council.

This award, founded by the Chinese government in 2003, recognises the academic excellence of self-financed Chinese students studying overseas.
The award selection panel considers
only students with outstanding performance in their PhD studies.
No more than 500 young talents all around the world win the award each year.

Well done Jia Jia

Posted in Uncategorized | Leave a comment

Nitrogen Reduction Reactions – Fact or Artifact

Artifacts that arise from adventitious carbon contamination of catalysts used in the electrochemical, photochemical and thermochemical reduction of CO2 to synthetic chemicals and fuels (, especially at low total conversions and low conversion rates, can only be authenticated through rigorous 13CO2 isotope-labeling proof-of-product experimentation to avoid the reporting of artifacts. Similarly, in the reduction of N2 to ammonia in aqueous solution using the aforementioned approaches, one must be equally diligent to apply strong checks to prevent the reporting of false-positives that can originate from impurities in the catalysts and N2 feed gas, and which require robust 15N2 isotope labeling to ensure unequivocal identification of the source of the ammonia.
Graphic image courtesy of Chenxi Qian.

The full article can be read on the Advanced Science News website.

Posted in Uncategorized | Leave a comment

Green Syngas by Solar Dry Reforming – Killing Two Greenhouse Gasses With One Stone

Congratulations Alex Tavasoli on your Commentary in Joule,”Green Syngas by Solar Dry Reforming: Killing Two Greenhouse Gases with One Stone”!
A photothermal dry reforming process has been developed that efficiently transforms two potent greenhouse gases, CH4 and CO2, into industrially valuable synthesis gas (a mixture of CO and H2), using a uniquely structured nickel-silica nanoscale catalyst that is impressively resistant to deactivation by coking. This exciting new discovery provides an opportunity to “kill two greenhouse gases with one stone.”

The full article can be read on the Joule website.

Posted in Uncategorized | Leave a comment

Congratulations to Yuchan and Kulbir!

Congratulations Yuchan Dong and Kulbir Ghuman and Co-Authors on your Advanced Science Paper Entitled Tailoring Surface Frustrated Lewis Pairs of In2O3-x(OH)y for Gas-Phase Heterogeneous CO2 Hydrogenation by Isomorphous Substitution of In3+ with Bi3+
The excited state acidity and basicity of the surface frustrated Lewis pair, in oxygen vacancy and hydroxide defect-laden BizIn2-zO3-xOHy, can be chemically tailored, by controlling the level of isomorphous substitution of Bi(III) for In(III) in the Bixbyite crystal lattice. This makes it possible to optimize the catalytic performance of the solar powered reverse water gas shift reaction, CO2 + H2O –> CO + H2O.

The full article can be read on the Advanced Science website.

Posted in Uncategorized | Leave a comment

Congratulations to Ab Jelle!

Well done Ab on your solar fuels paper published in Advanced Energy Materials, January 2018, where you demonstrate a highly efficient ambient temperature Solar Sabatier process whereby CO2 photomethanation is catalyzed by nanostructured RuO2 on a silicon photonic crystal support at the remarkable rate of 4.4 mmol gcat-1h-1. This exceptional photomethanation rate is due to the large surface area coupled with the unique light-trapping and broadband optical absorption properties of the photonic crystal support. Graphic illustration courtesy of Chenxi Qian.

More details about this study can be read here and the full article can be found on the Advanced Energy Materials website.

Posted in Uncategorized | Leave a comment

Solar Fuels Team – Breaking News

The U of T Solar Fuels Team has been selected as one of 20 semi-finalists from 160 applicant’s world wide, in the Ontario Center of Excellence Solutions 2030 Challenge Phase 1 competition, to find technological solutions to the greenhouse gas emissions problem in Ontario.

The strategy proposed by the solar fuels team focuses on the development of light-powered processes for the conversion of  CO2 to synthetic fuels, via gas-phase heterogeneous hydrogenation photocatalysis. This goal of the project is to transition a laboratory CO2-to-fuels prototype to a scaled-up CO2-to-fuels demonstration unit.

Eight winning teams from Phase 1 will receive up to $250,000 in Phase 2 with 10 months to reduce their proposed solution to practice. The winning team in Phase 2 will be eligible for up to $3,000,000 Phase 3 funding to bring their transformative technology to market. The mandate of the Solutions 2030 Challenge is for winning teams and industry to collaborate and envision a path forward to tackle climate change in Ontario and around the world.

Posted in Uncategorized | Leave a comment

Pores for Thought: Stand Up and Be Counted

Zheng-Min Wang, Wendong Wang and Geoffrey Ozin have discovered a synthetic pathway to a sandwich-type nanocomposite of reduced graphene oxide and periodic mesoporous silica in which mesochannels of silica vertically align with respect to the graphene layers with tunable mesochannel depth and size. Deep insight into the formation mode of this novel class of materials obtains from a high photon flux small angle X-ray scattering technique and zeta potential-based solution chemistry, Advanced Functional Materials 2017, DOI: 10.1002/adfm.201704066

A summary of this work can be read here.

Posted in Uncategorized | Leave a comment