90% of our commodity chemicals and fuels are made from thermocatalysis industries driven by heat or grid power. In the context of carbon-neutral society, sunlight-driven photocatalysis is an ideal alternative to thermocatalysis especially for CO2 and H2O utilization. However, how to scale the lab-scale photocatalysis into real industry remains uncertain. To amplify, the efficiency of photocatalysis not only rely on the temperature related reaction rates but also the utilization of charge carriers, which requires simultaneous optimization of quantum yield and light transport. The challenges lie in photocatalyst and photoreactor engineering to use every incident photon reaching every catalytic site while minimizing parasitic absorption, reflection, scattering, transmission, and thermal conductive, convective, and radiative losses. See full story at Advanced Science News.
-
Recent Posts
- Understanding the science behind the neon shortage
- Congratulations to Professor Geoffrey Ozin on being selected as the 2022 recipient of the Killam Prize in natural sciences
- Congratulations Dr. Shufang Ji on being selected as a recipient of the 2022 Banting Postdoctoral Fellowship Award
- Congratulations to Lourdes, Abhinav and co-authors on their recent publication on CO2 Photocatalytic Foams in the Chemical Engineering Journal
- Congratulations to Joel and co-authors on their recent publication in Advanced Energy Materials
Recent Comments
Categories
Header Courtesy of Digital Westex